Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Wang, Wei Wang,* Hai-Jun Chi and Qing-Shan Yang

School of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail:
wjwyj82@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.050$
$w R$ factor $=0.144$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-2,2'-[(2-Butene-1,4-diyl)dithio]bis(4,5-dihydro-1,3-thiazine)

The title compound, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{4}$, was synthesized by the reaction of trans-1,4-dibromo-2-butene and 1,3-thiazine-2thione. The molecule contains a centre of inversion at the midpoint of the central double bond and the thiazine rings have an envelope conformation.

Comment

As a type of ditopic ligand, dithioethers can be used as bridging ligands in the building of coordination polymers with soft metal ions. N-Heterocylic units have been synthesized and investigated (Sharma et al., 1999; Constable et al., 2002; Bu et al., 2003; Hong et al., 2000). Thiazine derivatives possess acaricide properties. In order to study the properties of these compounds, we have synthesized several new thiazine derivatives, and we present here the crystal structure of one of them, (I).

(I)

In the molecular structure of (I) (Fig. 1), there is an inversion centre at the mid-point of the central $\mathrm{C} 6=\mathrm{C}^{\mathrm{i}}$ bond [symmetry code: (i) $-x, 1-y,-z$]. The thiazine ring has an envelope conformation, with atom C2 deviating by 0.559 (9) \AA from the plane of the remaining five ring atoms. As a result of the centrosymmetric character of (I), the two thiazine rings point in opposite directions, reducing potential steric hindrance. Atom C 4 has a distorted trigonal geometry, with the $\mathrm{N} 1-\mathrm{C} 4-\mathrm{S} 1$ and $\mathrm{S} 1-\mathrm{C} 4-\mathrm{S} 2$ angles (Table 1) deviating significantly from the ideal geometry for an $s p^{2}$-hybridized C atom.

The $\mathrm{C}=\mathrm{C}$ bond distance of 1.318 (6) \AA of the butene group is shorter than the value of $1.34 \AA$ expected for a normal $\mathrm{C}=\mathrm{C}$ bond (Lide, 1992-1993). The butenediyl group is planar. The $\mathrm{Csp}{ }^{2}-\mathrm{S}$ bonds distance are significantly shorter than the Csp ${ }^{3}-\mathrm{S}$ bonds (Table 1), as expected, and are comparable with those found in the literature (e.g. Wang et al., 2004, 2005).

As shown in Fig. 2, intermolecular S..S interactions [3.587 (3) \AA] link the molecules of (I) into a two-dimensional network.

Experimental

A solution of trans-1,4-dibromo-2-butene ($1.07 \mathrm{~g}, 5 \mathrm{mmol}$) in ethanol $(5 \mathrm{ml})$ was added dropwise to a mixture of 1,3 -thiazine-2-thione $(1.46 \mathrm{~g}, 11 \mathrm{mmol}), \mathrm{KOH}(0.615 \mathrm{~g}, 11 \mathrm{mmol})$ and ethanol $(5 \mathrm{ml})$. The

Received 18 August 2006
Accepted 19 September 2006

Figure 1
The molecular structure of (I), showing the atom-labelling scheme for the asymmetric unit. Non-labelled atoms are generated through symmetry code $(-x, 1-y,-z)$. Displacement ellipsoids are drawn at the 30% probability level.
reaction mixture was then stirred for 24 h at 298 K . The precipitate was then filtered off, washed with water and recrystallized from ethanol and water ($1: 1 \mathrm{v} / \mathrm{v}$) (yield 44%, m.p. $357-358 \mathrm{~K}$). Analysis found: C 45.17, H 5.62, N 8.83%; calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{4}$: C 45.25 , H $5.70, \mathrm{~N} 8.79 \%$. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of an acetone-dichloromethane (3:1) solution.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{4}$
$M_{r}=318.52$
Monoclinic, $P 2_{1} / n$
$a=8.282(5) \AA$
$b=10.578$ (6) \AA
$c=9.625$ (6) \AA
$\beta=114.100(8)^{\circ}$
$V=769.7$ (8) \AA^{3}

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$
$T_{\min }=0.726, T_{\max }=0.910$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.374 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.26 \times 0.20 \times 0.16 \mathrm{~mm}$

Bruker SMART CCD area-detector diffractometer
φ and ω scans
(SADAB correction. multi-scan
$T_{\text {min }}=0.726, T_{\text {max }}=0.910$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.144$
$S=1.06$
1567 reflections
82 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0586 P)^{2}\right. \\
& +0.568] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.97 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

S1-C4	$1.771(3)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.252(4)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.793(4)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.463(4)$
$\mathrm{S} 2-\mathrm{C} 4$	$1.768(3)$	$\mathrm{C} 6-\mathrm{C} 6^{\mathrm{i}}$	$1.318(6)$
$\mathrm{S} 2-\mathrm{C} 5$	$1.819(3)$		
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{S} 1$	$129.3(3)$	$\mathrm{S} 1-\mathrm{C} 4-\mathrm{S} 2$	$108.36(18)$
Sym			

Symmetry code: (i) $-x,-y+1,-z$.
All H atoms were positioned geometrically and refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93\left(\mathrm{Csp}^{2}-\mathrm{H} 6\right)$ and $0.97 \AA$ (methylene CH_{2}), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 2
A packing diagram for (I). The dashed lines indicate $\mathrm{S} \cdots \mathrm{S}$ short contacts between neighbouring molecules.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the 05 L003 project supported by the Education Department of Liao Ning Province in China.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X.-H., Xie, Y.-B., Li, J.-R. \& Zhang, R.-H. (2003). Inorg. Chem. 42, 74227430.

Constable, E. C., Housecroft, C. E., Kariuki, B. M., Kelly, N. \& Smith, C. B. (2002). Inorg. Chem. Commun. 5, 199-202.

Hong, M., Su, W., Cao, R., Fujita, M. \& Lu, J. (2000). Chem. Eur. J. 6, 427-431.
Lide, D. R. (1992-1993). Handbook of Chemistry and Physics, 73rd ed., pp. 931. Boca Raton: CRC Press Inc.

Sharma, C. V. K., Broker, G. A., Huddleston, J. G., Baldwin, J. W., Metzger, R. M. \& Rogers, R. D. (1999). J. Am. Chem. Soc. 121, 1137-1144.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, W., Liu, H.-M., Zheng, Y. \& Zhang, W.-Q. (2004). Acta Cryst. E60, o1279-o1280.
Wang, W., Zhao, B., Zheng, P.-W. \& Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

